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A FAST METHOD FOR THE NUMERICAL EVALUATION OF CONTINUOUS
FOURIER AND LAPLACE TRANSFORMS*

DAVID H. BAILEY t AND PAUL N. SWARZTRAUBER _

Abstract. The fast Fourier transform (FFT) is often used to compute numerical approximations to continuous

Fourier and Laplace transforms. However, a straightforward application of the FFT to these problems often requires

a large FFT to be performed, even though most oftbe input data to this FFT may be zero and only a small fraction

of the output data may be of interest, in this note, the "'fractional Fourier transform," previously developed by the

authors, is applied to this problem with a substantial savings in computation.
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1. Introduction. The continuous Fourier transform (CFT) of a function f(t) (which may

have real or complex values) and its inverse will be defined here as

f5(I) F[f](x) = f(t)e-i'_dt,

I_1 f(t)eitXdt '
(2) F -I [f](x) = _ oe

where i is the imaginary unit. The discrete Fourier transform (DFT) and the inverse DFT of

an n-long sequence z (which may have real or complex values) will be defined here as

n-1

(3) D_(z) = E zje-2rrijk/m'

j=0

(4) D_t(z ) = _ _1.-1 .m zje2":ruk/m

Straightforward evaluation of the DFT using these formulas is expensive, even when the

exponential factors are precomputed. This cost can be greatly reduced by employing one of

the variants of the fast Fourier transform (FFT) algorithm [1], [2], [5], [6].

The methods developed in this paper are equally applicable to the numerical evaluation

of continuous Laplace transforms, and the approach is the same as for Fourier transforms. For

brevity, this exposition will focus on evaluating continuous Fourier transforms.

2. A conventional scheme for evaluating CFTs with FFTs. There are of course a

number of advanced techniques for the approximate numerical evaluation of definite integrals

[4]. Unfortunately, most of these techniques deal with evaluating only one integral, rather

than a large number of integrals, each with a different integrand. Evaluating the CFT falls in

this latter category, since one usually requires the values of this integral for a large range of x.
The FFT can be effectively applied to this problem as follows. Let us assume that f(t) is

zero outside the interval (-a/2, a/2). Let/3 = aim be the interval in t for the m input values

of f(t), which are assumed centered at zero, where m is even. To be specific, the abscissas

for the input data are t) = (j - m/2)fl, 0 < j < m. The abscissas for the output data set will

*Received by the editors November 9. 1992" accepted for publication (in revised form) July 30. 1993.

t Numerical Aerodynamic Simulation (NAS) Systems Division at National Aeronautic and Space Administration.

Moffett Field. California 94035-1000 ( dba i i eyOnas, nasa. gov ) .

_tNational Center for Atmospheric Research. Boulder. Colorado 80307 (pauls@near. ucar. edu) .

1105



1106 DAVID H. BAILEY AND PAULN. SWARZTRAUBER

be defined as xk = 2zr(k - m/2)/a = 2zr(k - rn/2)/(m/3), 0 < k < m. This definition ofxk

will be explained later. Then we can write

F(5) F(xk) = f(t)e-i'_kdt

a/2(6) = f(t)e-"Xkdt
,I -a / 2

m-|

(7) _ Z f(tj)e-it'x'/3
j=o

m-1

(8) = /3 Z f(tj)e-2_i(J-m/2)(k-m/2)/m
)=0

m--I

(9) = /3erri(k-rn/2) Z f(tj)eJriJ e-27r'J_/'n
j=O

(10) = (--1)k/3Dk[{(--1)J f(tj)}], 0 <_ k < m.

The DFT indicated in (10) can of course be rapidly evaluated using an FFT.

It is now clear why xk was defined as above--this is necessary for the expression (9) to
be in the form of a DFT. In other words, the interval (i.e., resolution) of the output results of

this procedure is fixed at the value 2rr/(m/3) as soon as one specifies the number m of input

values and their interval/3.

Let us assume that comparable intervals are required in t and x to obtain accurate results.

Then one must have 13_ 2rr/(m/3), or in other words m _ 2rr//3 2. From this observation it is

clear that if one wishes to obtain accurate, high-resolution results using this procedure, then it

may be necessary to set m very large, perhaps much larger than the actual size of the nonzero

input data set. Another way of saying this is that the input data f(ty) may need to be padded
on both sides with many zeros to obtain the desired resolution in the output data.

A specific example will illustrate these issues. Let us consider the problem of numerically

computing the Fourier transform of the Gaussian probability density function

(I I) f(t) = l---_e-_Z/2.
v'2rr

It is well known that the Fourier transform of f(t) is

(12) F(x) = e -x:/2.

Note that outside the interval [- 10, i 0], we have f(t) < 7.7 x 10 -23 and F(x) < 1.9 x 10 -22.

Suppose now that one wishes to compute the Fourier transform using the above FFT
scheme with a resolution of ,/_-_/256 in both t and x. One can do this provided that one sets

m = 65,536, since in that case/3 = 27r/(rn/3). However, both the input and output data then

span the interval [-m/3/2, rn/3/21, or approximately [-320.8,320.8].

In short, as a consequence of the fundamentally inflexible nature of the FFT when applied

to this problem, it turns out that a large fraction of the input data to the FFT used to evaluate

(10) are considerably smaller than the machine "epsilon" of most computers, even when using

double precision arithmetic. Also, only a small fraction (the central values) of the output of
this FFT are of interest. Thus we seek a more flexible scheme for problems of this sort, one

that can produce the central section of the results, using only the central nonzero input data,

with a savings of computation.
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3. The Fractional Fourier Transform (FRFT). We will employ here a generalization of

the DFT that has been termed the FRFT [3]. It is defined on the m-long complex sequence x

as

m-I

X e -2rrijkt_
(13) Gk(x,a) = /_.., j •

j=0

The parameter a is not restricted to rational numbers and in fact may be any complex number.

Note that the ordinary DFT and its inverse are special cases of the FRFT.

A fortunate fact is that the FRET admits computation by means of a fast algorithm, one

with complexity comparable to the FFT. In fact, it employs the FFT in a crucial step. This

algorithm can be stated as follows. Define the 2m-long sequences y and z as

''2

(14) yj = xje -_'j _', 0 < j < m,

(15) yj = O, m < j < 2m,

(16) 0 = e_ii"'_, 0 < j < m.

(17) zj = e 7ri(j-2m)'et, m _< j < 2m.

It is then shown in [3] that

(19)

(20)

Then we have

(18) Gk(x, ct) = e-_'k'-'_D_.][{Dj(y)Dj(z)}], 0 <_ k < m.

The remaining m results of the final inverse DFT are discarded. Element-wise complex

multiplication is implied in the expression Dj(y)Dj(z). These three DFTs can of course be

efficiently computed using 2m-point FFTs.

To compute a different m-long segment Gk+.,.(x, or), 0 _< k < m, it is necessary to slightly

modify the above procedure. In this case z is as follows:

z) = e rri_)+s)'-a, 0 <_ j < m,

2) = e :ri(.l+s-2m)'-ct , m <_ j < 2m.

(21) Gk+s = e-_r'_k+s)""Dk][{Dj(y)Dj(z)}l, 0 < k < m.

Note that the exponential factors in (14)-(21 ) can be precomputed. Furthermore, the DFT

of the z sequence can also be precomputed. Thus the cost of an m-point FRFT is only about

four times the cost of an m-point FFT.

4. Computing CFTs with FRFTs. One of the applications of FRFTs mentioned in [3]

is computing DFTs of sparse sequences, i.e., sequences that are mostly zero. It is particularly

effective when only a small portion of the input data values are nonzero, and only a small

portion of the output values are required. Thus, the FRFT is very well suited for the problem

at hand.

As before, we will assume that f(t) is zero outside the interval (-a/2, a/2), and that

15 = a/m is the interval of the m input values of f(t), which will be assumed centered at

zero; i.e., ti = (j - m/2)15, 0 <_ j < m. We will now define y to be the interval desired for

the output data, so that they are given by xk = (k - m/2)y, 0 < k < m. Set 3 = 15×/(2zr).

Then we can write

(22)
_

F(xt) = f(t)e-"_dt
oc

/
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= [a/2(23) f(t)e-"X_dt
,I -a / 2

m-1

(24) "_ E f(tj)e-i'Jx'/6
j=0

ra--t

(25) = 16Z f(tj)e-i(J-rn/2)(k-rn/2)[_r
j=O

rn-1

= f(t )e'Vi)rn_e-2rrtjk_(26) _eZri(t--m/2)m_ Z J
j=0

(27) =/6erri{k-m/2)m_Gk[{f(tj)eZriJm_}, _]. OSk<m.

We now have an economical means of computing the central m results of this transform.

Additional m-long segments of results can be obtained by applying the more general form of

the FRFT given at the end of the previous section.

(28)

(29)

(30)

5. Implementation example. Collecting the results we have obtained so far, we have

f o_
F(xk) = f(t)e-"X_dt

/6e_itk-m/e)rn'S G k[ {f (tj )erijrn_}, _]

= _e _i[tx-"/2)ma-k_'sl D-_ I [{Dj(y) Dj(z)}], O_k<m,

where the 2m-long sequences y and z are given by

(31) 3) = f(tj)e _i_ym_-):_), 0 < j < m,

(32) yj = 0, m < j < 2m,

(33) zj = e xij'_, 0 < j < m,

(34) zj = e rri{j-2m)z'_, m <_ j < 2m.

Let us now reconsider the problem of numerically computing the Fourier transform of

the Gaussian probability density function

i -r'-/2
(35) f(t) = --_e .

Recall that the Fourier transform of f(t) is

(36) F(x) = e -_'-/2.

Also recall that outside the interval [-I0, 10], we have f(t) < 7.7 × 10 -23 and F(x) <

1.9 x 10 -2_-.

To compute the Fourier transform using the conventional FFT scheme with a resolution

of v/2-_/256 in both t and x, we have/6 = / = x/_-/256 and m = 2rr/(/_y) = 65,536. An

implementation of this scheme requires 3.95 seconds on a SGI Personal Iris. Compared with

exact values of the transform computed from the formula above, the root-mean-square (RMS)
error of the central 2048 results is 1.14 x 10 -16.

Note however that only the central 2048 result values, which span the approximate interval

[-10.02, 10.02], are required---outside this interval both the input and output function values



A FAST METHOD FOR CONTINUOUS FOURIER TRANSFORMS 1109

can be assumed to be zero with high accuracy. Applying the FRFT scheme with m = 2048

yields these same results in 0.40 seconds on the Iris, fully ten times faster. The RMS error
of the FRFT results is 2.96 x 10 -16. Both of these error figures are virtually at the limit of

machine precision.
As an aside, while it is expected from the results of this paper that the FRFT results

should be within machine precision of the FFT results, it is remarkable that both are also

within machine precision of the actual values resulting from the analytic formula (36). This is

in spite of the fact that the interval used in the step function approximation to the integral has

the modestly small value # _ 0.01. This surprising phenomenon evidently derives from the

fact that step function approximations to integrals converge to the exact results very rapidly

provided that the function f(t) has rapidly decreasing Fourier coefficients [4]. This condition

is met by the Gaussian probability density function.
It should also be mentioned that in this specific example, one may accurately recover

the original data by performing an inverse transform with the FRFT. This can be done by

employing formulas (30)-(34) with 8 replaced by -8. This operation works because the
results of the forward transform, like the original data, can be assumed to be precisely zero

outside the interval [-10.02, 10.02]. For other functions f(t) this condition may not hold,

and as a result this inversion operation would not be expected to accurately reconstruct the

original data.

6. More advanced quadrature schemes. The techniques described above were formu-

lated on the basis of a simple step-function approximation to the integral. These techniques

can also be applied to a Simpson's rule approximation, as follows. Let CJ = 4 for odd j and

cj = 2 for nonzero even j. Then we have

F(37) F(xk) = f(t)e-"_kdt

a/2= f(t)e-UXkdt
(38) J-_/2

m- I

(39) "_ Z cjf(t))e-"#x_fl
,,=0

m-[

(40) = [3Z cjf(tj)e-i(#-m/2)(k-m/2)#×
j=O

m-I

(41) -- #eni(k-m/2>m6 Z cj f (tj)e_ijm_ e-2nijk_
j=O

(42) = #e_i<k-m/Z)"_Gt[{cjf(tj)e=iJm_}, 8], O<k<m.

One difficulty with using Simpson's rule to evaluate Fourier integrals is that the accuracy

of the quadrature depends on the size of the product f(t)e -_x. In particular, the accuracy

may deteriorate for large values of x, due to the oscillatory nature of the integrand. For this

reason some scientists prefer using Fiion's method [4, p. 151] to evaluate Fourier integrals.
Filon's method has the advantage that the accuracy depends only on the smoothness of f(t).

Again, an FRFT-based scheme can be profitably applied here, since Filon's method employs

equispaced intervals. The approach is entirely similar to the above, and details will not be

given here.

In general, the FRFT-based technique described above can be profitably applied to the
numerical evaluation of any integral transform where (1) both the input function values f(tj)
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and the output transform values F(x_) are equally spaced, (2) a large fraction (more than 75%)

of f(tj) are either zero or within machine tolerance of zero relative to max If(is)l, and (3)

only a limited range of F(xk) is required.
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